>

Constant voltage drop model - Add a diode. Right click on the "D" in the lower right

You'll get a detailed solution from a subject matter expert that helps you

Constant Voltage Drop Model. It is considered that the forward voltage drop of the diode is constant, the reverse resistance is infinite, and the reverse current is 0.Use whatever exponential model you like to calculate the actual forward voltage of the diode at that specific current level. Change your ideal voltage source voltage to the calculated diode voltage. Repeat until the values of diode voltage and current converge to your satisfaction. Or, run a SPICE simulation.Oct 13, 2020 · This video introduces the constant voltage drop (CVD) model for diodes as a means to abstract the non-linear behavior of the device. It also shows examples of how to use the CVD model to... You'll get a detailed solution from a subject matter expert that helps you learn core concepts. Question: 5. The input signal vin for the following circuit is given. Draw the waveform of vout on the same graph with vin. Use the constant-voltage-drop model and assume the knee voltage of the diode is 0.7 V. 6 V w 2.2K Vout Vin .3V -6V →. You'll get a detailed solution from a subject matter expert that helps you learn core concepts. Question: 5. The input signal vin for the following circuit is given. Draw the waveform of vout on the same graph with vin. Use the constant-voltage-drop model and assume the knee voltage of the diode is 0.7 V. 6 V w 2.2K Vout Vin .3V -6V →.(b) Repeat using the constant voltage drop model with Von = 0.6 V. 3.11 Multiple Diode Circuits. 3.74. Find the Q-points for the diodes in the four circuits in ...Electrical Engineering questions and answers. +5 V in ill Ri 1 k 2 Di V D2 * -ovo R2 10 ΚΩ -5 V a) Using the constant-voltage-drop model for the diodes, compute the values for ij, i2, and V.. [5 Points] b) What is the minimum value that resistor R, can take while ensuring that both D, and D2 are conducting? (5 Points)A voltage regulator is an electromechanical component used to maintain a steady output of volts in a circuit. It does this by generating a precise output voltage of a preset magnitude that stays constant despite changes to its load conditio...3.41 The diode whose characteristic curve is shown in Fig. 3.15 is to be operated at 10 mA. What would likely be a suitable voltage choice for an appropriate constant-voltage-drop model?FIGURE 3.1S Development of the consting voltage-drop model of the diode forward characteristic5. A verticel suruight ine (B) is used to approximate ihe fasl-risine This model is the one of the simplest and most widely used. It is based on the observation that a forward-conducting diode has a voltage drop that varies in a relatively narrow range, say 0.6 V to 0.8 V. The model assumes this voltage to be constant, say, 0.7 V. The constant voltage drop model is the one most frequently employed in the initial ... The Shockley diode calculator allows you to calculate either the voltage drop or the current flowing through a real diode, knowing the other value. It allows you to calculate I-V values and helps you understand how the transistor works in either forward or reverse bias. The Shockley diode calculator can obtain values for both a real (imperfect ...Consider a half-wave peak rectifier fed with a voltage v S v_{S} v S having a triangular waveform with 24-V peak-to-peak amplitude, zero average, and 1-kHz frequency. Assume that the diode has a 0.7-V drop when conducting. Let the load resistance R = 100 Ω R=100 \Omega R = 100Ω and the filter capacitor C = 100 μ F. C=100 \mu \mathrm{F}.Question: For each of the circuits given below, assume that the diodes are following a constant voltage drop model with Von=0.75 V. Match each circuit to the correct values of currents ID1 (Current on diode 1) and ID2 (current on diode 2) (a) (b) (c) (d)Circuit (a) Circuit (b) Circuit (c) Circuit (d)Solution Since v /VT i = IS e then −v /VT IS = ie f188 Chapter 4 Diodes Example 4.3 continued For the 1-mA diode: −3 −700/25 −16 IS = 10 e = 6.9 × 10 A The diode conducting 1 A at 0.7 V corresponds to one-thousand 1-mA diodes in parallel with a total junction area 1000 times greater.This set of Analog Circuits Multiple Choice Questions & Answers (MCQs) focuses on “Parallel Clipper-1”. 1. For a circuit given below, what will be the output if input signal is a sine wave shown below. 2. For a circuit given below, what will be the output if input signal is a triangular wave shown below. 3.The Practical Diode Model or Constant Voltage Drop Model includes the barrier potential Forward-biased: diode is equivalent to a closed switch in series with a small equivalent voltage source (V F ) equal to the barrier potential (0.7 V) with the positive side toward the anode. Final answer. 3. For the circuits shown below, find the values of the labeled voltages and currents using constant-voltage-drop model. 4. The input signal vin for the following circuit is given. Draw the waveform of vout on the same graph with vin. Use the constant-voltage-drop model and assume the knee voltage of the diode is 0.7 V.Solve the multiple ideal diode circuits problem. Find the Q-points for the diodes in the four circuits in Fig. P3.68 using (a) the ideal diode model and (b) the constant voltage drop model with Von = 0.7 V. Note that Resistor = 15kOhm. The second picture is my solution, I don't know if it is right or wrong.Electrical Engineering. Electrical Engineering questions and answers. For the circuits in Fig. P4.10, utilize Th venin s theorem to simplify the circuits and find the values of the labeled currents and voltages. Assume that conducting diodes can be represented by the constant-voltage-drop model V (D)=0.7 Volts.Electrical Engineering. Electrical Engineering questions and answers. 4.67 Consider a half-wave rectifier circuit with a triangular-wave input of 6-V peak-to-peak amplitude and zero average, and with R = 1 k12. Assume that the diode can be represented by the constant-voltage-drop model with VD=0.7 V. Find the average value of vo.For the circuits shown below, find the values of the labeled voltages and currents using constant-voltage-drop model. This problem has been solved! You'll get a detailed solution from a subject matter expert that helps you learn core concepts.4.3 Diode Circuit Models Diodes present a circuit analysis challenge compared to linear devices (such as resistors) owing to the complex shape of the diode curve. Unlike a resistor, there isn’t an exact analytical expression relating voltage and current in a diode that can be written down and used in KVL and KCL and node voltage analyses described in chapter 3.2. Analysis with mathematical model of diode. 3. Simplified analysis using ideal diode model. 4. Simplified analysis using constant voltage drop model. 1. Graphical analysis using load line.; Quiescent point is the intersection of the diode’s I-V and the load line. This gives the operating point of the circuit. +-+-R=10kΩ V=10V VD ID Von VD ... If a constant 0.7v is too wrong for your purposes, let's say you want to estimate the diode voltage drop at 1nA, then you would use a better …Expert Answer. For each of the circuits given below, assume that the diodes are following a constant voltage drop model with V on = 0.75 V. Match each circuit to the correct values of currents I D1 (Current on diode 1) and I D2 (current on diode 2) (a) (b) (c) (d) In the following circuit assume VX = 6.6 V, VY = 1.5 V,R1 = 3.6kΩ,R2 = 10kΩ ...The diode used in the circuit shown in fig. has a constant voltage drop of 0.5 V at all currents and a maximum power rating of 100 milliwatt.Question: | 4.43 For the circuits in Fig. P4.7, using the constant-voltage-drop (V=0.7 V) diode model, find the values of the labeled currents and voltages. VE 4.3 + 3V + 3V 1kN 33 kB I X D X D2 I DI D2 ov ov ko 31 ke - 3v - 3V (a) Figure P4.7 . Show transcribed image text.Find the Q-point for the diodes in the circuits in Fig. P3.71 using the constant voltage drop model with Von =0.65 V.r−3; This problem has been solved! You'll get a detailed solution from a subject matter expert that helps you learn core concepts. See Answer See Answer See Answer done loading.Electrical Engineering questions and answers. Assume the diode in the circuit below is real and model it using the constant voltage drop model. Further assume V1=25 V, R1=368 12, R2=91212, R3=916 12, R4=1,060 12, and 11=0.009 A. Determine the voltage on the node labeled Vx. Express your answer in Volts and round to the 1st digit to the right of ...Electrical Engineering. Electrical Engineering questions and answers. Consider the circuit shown in the figure below. Assume that the diodes can be modeled by the constant-voltage- drop diode model, having a voltage drop VD 07 V when conducting (see Fig. 6 in Question 5). The input voltage vr is a sine wave with a 10-V peak amplitude.Circuit analysis with 2 diodes : Constant Voltage model. It's a problem about sketching V_in V_out characteristics (sketching graph with V_in as x axis, V_out as y axis) with constant voltage model in different V_D,on (V_D1,on != V_D2, on) Starting from V_in = -inf, both D1 and D2 are turned off : (D1, D2) = (off, off) and it's obvious that V ...Simple answer is that diode can't act as a voltage source. If external voltage (Vext) is greater than 0.7V then drop across diode is 0.7V and if Vext < 0.7V then the drop across the diode can't be greater than Vext. So, if you see the I-V chart of this approximation you can see that before cut-in voltage(0.7V) current(Id) is zero. 9-1. For the circuits shown, find the values of the voltages and currents indicated using the constant-voltage-drop model for a silicon junction (VD = 0.7V) . 9-2. For the diode balance circuit shown find values of voltage and current (V1, V2, I1) using (a) A Si diode (VD = 0.7). (b) A SiC LED (Cree red/amber)1. The Constant Voltage Drop (CVD) Zener Model 2. The Piece-Wise Linear (PWL) Zener Model The Zener CVD Model Let’s see, we know that a Zener Diode in reverse bias can be described as: iI v V Zs Z ZK≈≈ <0 and Whereas a Zener in breakdown is approximately stated as: ivV ZZZK>≈0 and Q: Can we construct a model which behaves in a similar A full-wave bridge-rectifier circuit with a 1 − k Ω 1-\mathrm{k} \Omega 1 − k Ω load operates from a 120-V (rms) 60-Hz household supply through a 12-to-1 step-down transformer having a single secondary winding. It uses four diodes, each of which can be modeled to have a 0.7-V drop for any current. What is the peak value of the rectified voltage across the load?Electrical Engineering questions and answers. (30 points) Problem 1: AC signal v (t)=Vm sin (wt), where w=2p/T, with T being the period, is applied at the input of a bridge rectifier. 1. Use the constant-voltage-drop-model to show that the average or DC component of output voltage is V.@ (2/p) Vm-2V) [Vis the voltage drop across a forward ...In Fig. 5, V F increases to the right along the horizontal axis, and I F increases upward along the vertical axis.. Figure 5: Relationship of voltage and current in a forward-biased diode. I F increases very little until the …Final answer. Using constant voltage drop model of v, = 0.7V, redraw the circuit shown in Figure 1. Calculate the current I, the voltage V, and the Q-points of the diodes. 02 c5kg Dm +OV - ♡ Di E 10kOF 0 - 10V HK Figure 1.The constant-voltage-drop model of the diode forward characteristics and its equivalent-circuit representation. Development of the diode small-signal model. Note that the numerical values shown are for a diode with n = 2. Load line Diode characteristic Q is the intersect point Visualization Half-wave rectifier.2. For the bridge-rectifier circuit of shown, use the constant-voltage-drop diode model to show that (a) The average (or dc component) of the output voltage is Vo. 2/π)V-2 Vo and (b) The peak diode current is Va-2Vo)IR Find numerical values for the quantities in (a) and (b) and the PIV for the case in which vs is a 12-V (rms) sinusoid, Vo-0.7 V, and R 100 …Going off of what echad said, the constant voltage drop model is the simplest one, and speeds up analysis. In reality, voltage drop on diodes have an exponential relationship. Also, there are several different …by the constant-voltage drop model (V D = 0.7 V). V I V 10kW I +15V 10kW +15V 10kW +10V 20kW 20kW 10kW 10kW Figure 3.3: Solution kΩ and 15 V source can be replaced, using Thevenin’s theorem, by a voltage source V = V s ×20/(10+20) = 15×20/30 = 10V and a resistor that is the parallel equivalent of the two that can be replaced with their ...4.3.1 The Exponential Model 190 4.3.2 Graphical Analysis Using the Exponential Model 191 4.3.3 Iterative Analysis Using the Exponential Model 191 4.3.4 The Need for Rapid Analysis 192 4.3.5 The Constant-Voltage-Drop Model 193 4.3.6 The Ideal-Diode Model 194 4.3.7 The Small-Signal Model 195 4.3.8 Use of the Diode Forward Drop in Voltage ...4.41 For the circuits shown in Fig. P4.2, using the constant-voltage-drop (VD = 0.7 V) diode model, find the voltages and currents indicated. This problem has been solved! You'll get a detailed solution from a subject matter expert that helps you learn core concepts.2/6/2012 The Constant Voltage Drop Model present 1/16 Jim Stiles The Univ. of Kansas Dept. of EECS The Constant Voltage Drop (CVD) Model Q: We know if significant positive current flows through a junction diode, the diode voltage will be some value near 0.7 V. Yet, the ideal diode model provides an approximate answer of vD =0 V. Electrical Engineering questions and answers. Consider a half-wave rectifier circuit with a triangular-wave input of 5V peak-to-peak amplitude and zero average, and with R = 1k ohm. Assume that the diode can be represented by the constant voltage drop model with V_D = 0.7V. Find the average value of V_0. This video introduces the constant voltage drop (CVD) model for diodes as a means to abstract the non-linear behavior of the device. It also shows examples of how to use the CVD model to...Consider a half-wave rectifier circuit with a triangular-wave input of 5-V peak-to-peak amplitude and zero average, and with R=1 \mathrm {k} \Omega. R= 1kΩ. Assume that the diode can be represented by the constant-voltage-drop model with V_ {D}=0.7 \mathrm {V}. V D = 0.7V. Find the average value of v_ {O}. vO. Two diodes with saturation ... For the diode circuit shown below, find I1, I2, and the Q-point of the diode according to: (a) ideal diode model (b) constant voltage drop model with a a turn on voltage at 0.6 V Many Thanks! For the diode circuit shown below, find I 1 , I 2, and the Q-point of the diode according to: Many Thanks! simplified model, the diode voltage drop is therefore assumed to be constant (equal to Von) for any current in the forward direction, and the diode current is assumed to be zero for any voltage V < Von, as shown in Fig. 3.3(a). The equivalent circuit of the diode is then simply a n n n p p p p n p n p n ON OFF ON OFF (a) (b) (c) I V Ronby the constant-voltage drop model (V D = 0.7 V). V I V 10kW I +15V 10kW +15V 10kW +10V 20kW 20kW 10kW 10kW Figure 3.3: Solution kΩ and 15 V source can be replaced, using Thevenin’s theorem, by a voltage source V = V s ×20/(10+20) = 15×20/30 = 10V and a resistor that is the parallel equivalent of the two that can be replaced with their ...Question: For each of the circuits given below, assume that the diodes are following a constant voltage drop model with Von=0.75 V. Match each circuit to the correct values of currents ID1 (Current on diode 1) and ID2 (current on diode 2) (a) (b) (c) (d)Circuit (a) Circuit (b) Circuit (c) Circuit (d), κ = 11.7 is the dielectric constant of silicon and ... For the circuit shown in Figure (3.3), utilize the constant-voltage-drop model (0.7 V) for each conduction diode and show that the transfer characteristic can be described by: for -4.65 6 v I 6 4.65 V v o = v I for vFor the circuits shown in Fig. P4.3, using the constant-voltage-drop (VD = 0.7 V) diode model, find the voltages and currents indicated. This problem has been solved! You'll get a detailed solution from a subject matter expert that helps you learn core concepts.9-1. For the circuits shown, find the values of the voltages and currents indicated using the constant-voltage-drop model for a silicon junction (VD = 0.7V) . 9-2. For the diode balance circuit shown find values of voltage and current (V1, V2, I1) using (a) A Si diode (VD = 0.7). (b) A SiC LED (Cree red/amber)Electrical Engineering questions and answers. Question 4. CVD Model Analysis [20pts] In the circuit below, assume the constant voltage drop model for the diodes and assume the turn-on voltage is 0.7 V. Calculate the values for current IR2 and ID2.2 Apr 2022 ... The circuit has to: - act as a two terminals load and able to dissipate 10-50W or so - keep a constant voltage drop in a range from mA to a ...Question: Find the Q-points for the diodes in the four circuits in Fig. P3.68 using (a) the ideal diode model and (b) the constant voltage. Upload to Study. Expert Help. Study Resources. Log in Join. exam 00 76 .pdf ... the ideal diode model and (b) the constant voltage drop model with V on = 0.7 V. Answer : (a) Determine the Q-points of the ...The Constant Voltage Drop (CVD) Model Q: We know if significant positive current flows through a junction diode, the diode voltage will be some value near 0.7 V. Yet, the ideal diode model provides an …Question: 4.40 Repeat Example 4.2 using the constant-voltage-drop (VD = 0.7 V) diode model. 4.40 Repeat Example 4.2 using the constant-voltage-drop ( V D = 0.7 V) diode model. Show transcribed image text Find step-by-step Engineering solutions and your answer to the following textbook question: A full-wave bridge-rectifier circuit with a $1-\mathrm{k} \Omega$ load operates from a 120-V (rms) 60-Hz household supply through a 12-to-1 step-down transformer having a single secondary winding. It uses four diodes, each of which can be modeled to have a 0.7-V …Q: Using the constant voltage drop model for the diodes in the circuit on the right, Calculate it. a)… A: Given a circuit with diodes and drop D=0.7 v Q: An AC voltage peak value of 20 Volts is connected in series with a silicon diode and load resistance…7 Mar 2011 ... Solved: Multisim11 student evaluation version. In a simple dc series circuit with a 10ohm resistor and (3) in4148 diodes forward biased, ...Dec 4, 2020 · Diode circuit analysis with constant voltage drop model. For this circuit I have to find the V_out/V_in ratio and my problem lies on one instance and that is , if V1 is negative (for the case V1< Diode on Voltage) all the current flows through the diode and diode acts like constant voltage source which in turn causes some current flow through R_1. Constant Voltage Drop Model. It is considered that the forward voltage drop of the diode is constant, the reverse resistance is infinite, and the reverse current is 0.Electrical Engineering. Electrical Engineering questions and answers. For the circuits in Fig. P4.10, utilize Th venin s theorem to simplify the circuits and find the values of the labeled currents and voltages. Assume that conducting diodes can be represented by the constant-voltage-drop model V (D)=0.7 Volts.Electrical Engineering. Electrical Engineering questions and answers. For bridge rectifier circuit below, the input sinusoid signal, vS=10sin (ωt−θ), and the resistance, R= 344Ω. Use the constant-voltage-drop model, where VD0=0.7 V.Chapter 4 Ex and problem solution. advertisement. Exercise 4–1 Ex: 4.1 Refer to Fig. 4.3 (a). For v I ≥ 0, the diode conducts and presents a zero voltage drop. Thus v O = v I . For v I < 0, the diode is cut off, zero current flows through R, and v O = 0. The result is the transfer characteristic in Fig. E4.1.Elliot Alderson. 31.2k 5 29 67. Ideal diode means zero voltage drop across diode in FB ,if you are talking about 0.7V drop across diode that is in the case of constant voltage drop model of a diode, So, if D1 is RB voltage drop across it will be 10V and across D2 zero. – user204283. Jul 12, 2020 at 18:54.Feb 15, 2015 · 2. From the sounds of it, the diode model you are using is the simple "ideal diode" with a fixed forward voltage. This model is an open circuit when VAnode −VCathode < VD V Anode − V Cathode < V D (reverse biased), and a fixed VD V D voltage supply otherwise (forward biased). Start by making assumptions about the state of D1 and D2 (for ... 14 Mar 2018 ... ... constant-voltage-drop model can be use to simplify the analysis of diode circuits (Courtesy of Sedra and Smith). 5 Small-Signal Model.For the circuits shown below, find the values of the labeled voltages and currents using constant-voltage-drop model. This problem has been solved! You'll get a detailed solution from a subject matter expert that helps you learn core concepts. See Answer See Answer See Answer done loading.Final answer. 3. For the circuits shown below, find the values of the labeled voltages and currents using constant-voltage-drop model. 4. The input signal vin for the following circuit is given. Draw the waveform of vout on the same graph with vin. Use the constant-voltage-drop model and assume the knee voltage of the diode is 0.7 V.Q: Using the constant voltage drop model for the diodes in the circuit on the right, Calculate it. a)… A: Given a circuit with diodes and drop D=0.7 v Q: An AC voltage peak value of 20 Volts is connected in series with a silicon diode and load resistance…Constant Voltage Drop Model Assume that if the diode is ON, it has a constant voltage drop (0.7V) Piecewise Linear Model Constant voltage up to 0.5V then resistor Ideal Diode Model Similar to constant voltage drop, but the voltage drop is 0 VWith diode 1 on and diode 2 off, the V terminal is at -5 V since there's no voltage drop across the 5k resistor due to there being no current, which means the voltage drop across diode 2 is 5.7 V since it's 0.7 V at the shared node with diode 1. Again, this isn't consistent with the model since no current flows through diode 2.19 Nov 2014 ... ... model, the ideal diode model, and the constant voltage drop model. Download Presentation. diode · diode model · ideal diode · circuit analysis ...1. The Constant Voltage Drop (CVD) Zener Model 2. The Piece-Wise Linear (PWL) Zener Model The Zener CVD Model Let's see, we know that a Zener Diode in reverse bias can be described as: iI v V Zs Z ZK≈≈ <0 and Whereas a Zener in breakdown is approximately stated as: ivV ZZZK>≈0 and Q: Can we construct a model which behaves in a similarQuestion: 4.41 For the circuits shown in Fig. P4.2, using the constant-voltage-drop (V) = 0.7 V) diode model, find the voltages and currents indicated. +5 V +5 V +5 V +5 V 10 k.12 10 k.12 $ -OV -OV OV -oV + 10 k12 10 k12 -5 V -5 V -5v -5 V (a) (b) (c) (d) Figure P4.2 a) -4.3 V, 0.93A Answers: b) 5 V, OA c) 4.3V, 0.93mA d) -5V, OA. Here’s the ...Find the Q-point for the diode in Fig. P3.64 using (a) the ideal diode model and (b) the constant voltage drop model with Von =0.6 V. (c) Discuss the results. Which answer do you feel is most correct? (d) Use iterative analysis to find the actual Q-point if IS=0.1fA. Figure P3.64 A voltage regulator is an electromechanical component used to maintain a steady output of volts in a circuit. It does this by generating a precise output voltage of a preset magnitude that stays constant despite changes to its load conditio...– Ideal model. – Exponential model. – Constant voltage drop model. – Piecewise-linear (we don't work with this model much, except for. Zener diode). Page 7 ...Final answer. For the diode circuit shown below, find I1,I2, and the Q-point of the diode according to (a) ideal diode model (b) constant voltage drop model with a turn on voltage at 0.6 V.by the constant-voltage drop model (V D = 0.7 V). V I V 10kW I +15V 10kW +15V 10kW +10V 20kW 20kW 10kW 10kW Figure 3.3: Solution kΩ and 15 V source can be replaced, using Thevenin’s theorem, by a voltage source V = V s ×20/(10+20) = 15×20/30 = 10V and a resistor that is the parallel equivalent of the two that can be replaced with their ...Question: Figure 1: Precision Rectifier 1. Characterize the relationship of input vs. output for the circuit in Figure 1. That is, find an expression for vivo. You can use the constant voltage drop model for the diodes. 2. Assemble the circuit in LTSpice. For the op-amp, use the LM324, and use 1 N4148 diodes. The power rails should be set to 9 ...Explanation: In constant voltage drop model at forward bias diode can be replaced as a cell and in reverse bias diode can be avoided by considering the terminals are open. Since D1 is in forward biased there will be a voltage drop of 0.5V. So net voltage will be 2.5V and hence current is 2.5mA.4.67 Consider a half-wave rectifier circuit with a triangular-wave input of 6-V peak-to-peak amplitude and zero average, and with R=1kΩ. Assume that the diode can be represented by the constant-voltage-drop model with VD =0.7 V. Find the average value of vO.Electrical Engineering questions and answers. Question 4. CVD Model An, Final answer. 3. For the circuits shown below, find the values of the labe, Explanation: In ideal diode model the diode is considered as a perfect conductor in forward bias and p, Solution for Find /, and Vo in the following circuit. Use diode constant voltage drop (CVD) model with VD, Solution Since v /VT i = IS e then −v /VT IS = ie f188 , For the circuits in Fig. P4.9, using the constant-voltage-drop (VD = 0.7 V) diode mo, 1. The Constant Voltage Drop (CVD) Zener Model 2. The Piece-Wi, 2. Analysis with mathematical model of diode. 3. Simplifie, 7 Mar 2011 ... Solved: Multisim11 student evaluation version. In, Electrical Engineering. Electrical Engineering questio, For the circuit shown in Figure (3.3), utilize the constant-volta, This model is very simplistic and the most widely used m, Development of the diode constant-voltage-drop model: (a) the expone, For the circuits shown below, find the values of the labeled voltages, For a silicon diode to turn on, it needs 0.7V. A voltage of 0.7V or g, Development of the diode constant-voltage-drop model: (a) the ex, You'll get a detailed solution from a subject matter , For the diode circuit shown below, find I1, I2, and the Q-p.